6 References

1.
Johannsen W. The genotype conception of heredity. Am Nat. 1911;45: 129–159. doi:10.1086/279202
2.
Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS. Molecular genetics of inherited variation in human color vision. Science. 1986;232: 203–210. doi:10.1126/science.3485310
3.
Lynch M, Walsh B, Others. Genetics and analysis of quantitative traits. Sinauer Sunderland, MA; 1998.
4.
Falconer DS, Others. Introduction to quantitative genetics. Introduction to quantitative genetics. 1960.
5.
Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM. Genetic variation. W. H. Freeman; 2000.
6.
Davis MB, Shaw RG, Etterson JR. Evolutionary responses to changing climate. Ecology. 2005;86: 1704–1714. doi:10.1890/03-0788
7.
Gutteling EW, Riksen JAG, Bakker J, Kammenga JE. Mapping phenotypic plasticity and genotype-environment interactions affecting life-history traits in caenorhabditis elegans. Heredity. 2007;98: 28–37. doi:10.1038/sj.hdy.6800894
8.
Félix M-A, Barkoulas M. Pervasive robustness in biological systems. Nat Rev Genet. 2015;16: 483–496. doi:10.1038/nrg3949
9.
Kiskowski M, Glimm T, Moreno N, Gamble T, Chiari Y. Isolating and quantifying the role of developmental noise in generating phenotypic variation. PLoS Comput Biol. 2019;15: e1006943. doi:10.1371/journal.pcbi.1006943
10.
Mendel G. Experiments in plant hybridization. Oliver & Boyd; 1965.
11.
1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467: 1061–1073. doi:10.1038/nature09534
12.
Telenti A, Pierce LCT, Biggs WH, Iulio J di, Wong EHM, Fabani MM, et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A. 2016;113: 11901–11906. doi:10.1073/pnas.1613365113
13.
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536: 285–291. doi:10.1038/nature19057
14.
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: Towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132: 1077–1130. doi:10.1007/s00439-013-1331-2
15.
Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. Nat Rev Genet. 2006;7: 277–282. doi:10.1038/nrg1826
16.
Barton NH, Keightley PD. Understanding quantitative genetic variation. Nat Rev Genet. 2002;3: 11–21. doi:10.1038/nrg700
17.
Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322: 881–888. doi:10.1126/science.1156409
18.
Donnelly P. Progress and challenges in genome-wide association studies in humans. Nature. 2008;456: 728–731. doi:10.1038/nature07631
19.
Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet. 2009;10: 241–251. doi:10.1038/nrg2554
20.
Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits: Challenges and prospects. Nat Rev Genet. 2009;10: 565–577. doi:10.1038/nrg2612
21.
Doroszuk A, Snoek LB, Fradin E, Riksen J, Kammenga J. A genome-wide library of CB4856/N2 introgression lines of caenorhabditis elegans. Nucleic Acids Res. 2009;37: e110. doi:10.1093/nar/gkp528
22.
Wong GT. Speed congenics: Applications for transgenic and knock-out mouse strains. Neuropeptides. 2002;36: 230–236. doi:10.1054/npep.2002.0905
23.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315: 1709–1712. doi:10.1126/science.1138140
24.
Paix A, Wang Y, Smith HE, Lee C-YS, Calidas D, Lu T, et al. Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 sites in caenorhabditis elegans. Genetics. 2014;198: 1347–1356. doi:10.1534/genetics.114.170423
25.
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346: 1258096. doi:10.1126/science.1258096
26.
Maupas E. Modes et formes de reproduction des nematodes. 1900.
27.
Nigon V. Le déterminisme du sexe chez un nématode libre hermaphrodite, rhabditis elegans maupas. C R Seances Soc Biol Fil. 1943;137: 40–41.
28.
Corsi AK, Wightman B, Chalfie M. A transparent window into biology: A primer on caenorhabditis elegans. Genetics. 2015;200: 387–407. doi:10.1534/genetics.115.176099
29.
30.
Wood WB. The nematode caenorhabditis elegans. Cold Spring Harbor Laboratory; 1988.
31.
Riddle DL, Blumenthal T, Meyer BJ, Priess JR, editors. C. Elegans II. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2011.
32.
Brenner S. The genetics of caenorhabditis elegans. Genetics. 1974;77: 71–94.
33.
Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, caenorhabditis elegans. Dev Biol. 1977;56: 110–156. doi:10.1016/0012-1606(77)90158-0
34.
Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode caenorhabditis elegans. Dev Biol. 1983;100: 64–119. doi:10.1016/0012-1606(83)90201-4
35.
Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, et al. Cell lineages of the embryo of the nematode caenorhabditis elegans. Proceedings of the National Academy of Sciences. 1978;75: 376–380.
36.
Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in caenorhabditis elegans. Dev Biol. 1979;70: 396–417. doi:10.1016/0012-1606(79)90035-6
37.
C. elegans Sequencing Consortium. Genome sequence of the nematode c. Elegans: A platform for investigating biology. Science. 1998;282: 2012–2018. doi:10.1126/science.282.5396.2012
38.
Kaletta T, Hengartner MO. Finding function in novel targets: C. Elegans as a model organism. Nat Rev Drug Discov. 2006;5: 387–398. doi:10.1038/nrd2031
39.
Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: A new comparative genomic analysis of human and caenorhabditis elegans genes. Genetics. 2018;210: 445–461. doi:10.1534/genetics.118.301307
40.
Singh RN, Sulston JE. Some observations on moulting in caenorhabditis elegans. Nematologica. 1978;24: 63–71. doi:10.1163/187529278X00074
41.
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A “molting” approach. Worm. 2012.
42.
Uppaluri S, Brangwynne CP. A size threshold governs caenorhabditis elegans developmental progression. Proc Biol Sci. 2015;282: 20151283. doi:10.1098/rspb.2015.1283
43.
Cassada RC, Russell RL. The dauerlarva, a post-embryonic developmental variant of the nematode caenorhabditis elegans. Dev Biol. 1975;46: 326–342. doi:10.1016/0012-1606(75)90109-8
44.
Hu PJ. Dauer. WormBook; 2018.
45.
Schindler AJ, Baugh LR, Sherwood DR. Identification of late larval stage developmental checkpoints in caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways. PLoS Genet. 2014;10: e1004426. doi:10.1371/journal.pgen.1004426
46.
Baugh LR, Sternberg PW. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during c. Elegans L1 arrest. Curr Biol. 2006;16: 780–785. doi:10.1016/j.cub.2006.03.021
47.
Monsalve GC, Van Buskirk C, Frand AR. LIN-42/PERIOD controls cyclical and developmental progression of c. Elegans molts. Curr Biol. 2011;21: 2033–2045. doi:10.1016/j.cub.2011.10.054
48.
Zaidel-Bar R, Miller S, Kaminsky R, Broday L. Molting-specific downregulation of c. Elegans body-wall muscle attachment sites: The role of RNF-5 E3 ligase. Biochem Biophys Res Commun. 2010;395: 509–514. doi:10.1016/j.bbrc.2010.04.049
49.
Suzuki Y, Yandell MD, Roy PJ, Krishna S, Savage-Dunn C, Ross RM, et al. A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in caenorhabditis elegans. Development. 1999;126: 241–250.
50.
Morita K, Chow KL, Ueno N. Regulation of body length and male tail ray pattern formation of caenorhabditis elegans by a member of TGF-beta family. Development. 1999;126: 1337–1347.
51.
Savage-Dunn C, Maduzia LL, Zimmerman CM, Roberts AF, Cohen S, Tokarz R, et al. Genetic screen for small body size mutants in c. Elegans reveals many TGFbeta pathway components. Genesis. 2003;35: 239–247. doi:10.1002/gene.10184
52.
Gumienny TL, Savage-Dunn C. TGF-\(\beta\) signaling in c. elegans. WormBook; 2018.
53.
Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009;16: 329–343. doi:10.1016/j.devcel.2009.02.012
54.
Gumienny TL, MacNeil LT, Wang H, Bono M de, Wrana JL, Padgett RW. Glypican LON-2 is a conserved negative regulator of BMP-like signaling in caenorhabditis elegans. Curr Biol. 2007;17: 159–164. doi:10.1016/j.cub.2006.11.065
55.
Baugh LR. To grow or not to grow: Nutritional control of development during caenorhabditis elegans L1 arrest. Genetics. 2013;194: 539–555. doi:10.1534/genetics.113.150847
56.
Brenner S. The genetics of caenorhabditis elegans. Genetics. 1974;77: 71–94.
57.
MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJM. Diet-induced developmental acceleration independent of TOR and insulin in c. elegans. Cell. 2013;153: 240–252. doi:10.1016/j.cell.2013.02.049
58.
So S, Miyahara K, Ohshima Y. Control of body size in c. Elegans dependent on food and insulin/IGF-1 signal. Genes Cells. 2011;16: 639–651. doi:10.1111/j.1365-2443.2011.01514.x
59.
Stuhr NL, Curran SP. Bacterial diets differentially alter lifespan and healthspan trajectories in c. elegans. Commun Biol. 2020;3: 653. doi:10.1038/s42003-020-01379-1
60.
Kammenga JE, Doroszuk A, Riksen JAG, Hazendonk E, Spiridon L, Petrescu A-J, et al. A caenorhabditis elegans wild type defies the Temperature–Size rule owing to a single nucleotide polymorphism in tra-3. PLoS Genet. 2007;3: e34. doi:10.1371/journal.pgen.0030034
61.
Rose JK, Sangha S, Rai S, Norman KR, Rankin CH. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in caenorhabditis elegans. J Neurosci. 2005;25: 7159–7168. doi:10.1523/JNEUROSCI.1833-05.2005
62.
Fujiwara M, Ishihara T, Katsura I. A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of c. Elegans sensory cilia. Development. 1999;126: 4839–4848.
63.
Fujiwara M, Sengupta P, McIntire SL. Regulation of body size and behavioral state of c. Elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron. 2002;36: 1091–1102. doi:10.1016/s0896-6273(02)01093-0
64.
Page AP, Johnstone IL. The cuticle. WormBook; 2007.
65.
McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a caenorhabditis elegansExtracellular matrix. MBoC. 2003;14: 1366–1378. doi:10.1091/mbc.e02-08-0479
66.
Lints R, Hall DH. WormAtlas hermaphrodite handbook - the cuticle. WormAtlas. 2003. doi:10.3908/wormatlas.1.12
67.
Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, et al. Chromosome-scale selective sweeps shape caenorhabditis elegans genomic diversity. Nat Genet. 2012;44: 285–290. doi:10.1038/ng.1050
68.
Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017;45: D650–D657. doi:10.1093/nar/gkw893
69.
Nicholas WL, Dougherty EC, Hansen EL. AXENIC CULTIVATION OF CAENORHARDITIS BRIGGSAE (NEMATODA: RHABDITIDAE) WITH CHEMICALLY UNDEFINED SUPPLEMENTS; COMPARATIVE STUDIES WITH RELATED NEMATODES*. Ann N Y Acad Sci. 2006;77: 218–236. doi:10.1111/j.1749-6632.1959.tb36902.x
70.
Hodgkin J, Doniach T. Natural variation and copulatory plug formation in caenorhabditis elegans. Genetics. 1997;146: 149–164.
71.
Thompson OA, Snoek LB, Nijveen H, Sterken MG, Volkers RJM, Brenchley R, et al. Remarkably divergent regions punctuate the genome assembly of the caenorhabditis elegans hawaiian strain CB4856. Genetics. 2015;200: 975–989. doi:10.1534/genetics.115.175950
72.
Kim C, Kim J, Kim S, Cook DE, Evans KS, Andersen EC, et al. Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in c. elegans. Genome Res. 2019;29: 1023–1035. doi:10.1101/gr.246082.118
73.
Capra EJ, Skrovanek SM, Kruglyak L. Comparative developmental expression profiling of two c. Elegans isolates. PLoS One. 2008;3: e4055. doi:10.1371/journal.pone.0004055
74.
Rockman MV, Skrovanek SS, Kruglyak L. Selection at linked sites shapes heritable phenotypic variation in c. elegans. Science. 2010;330: 372–376. doi:10.1126/science.1194208
75.
Viñuela A, Snoek LB, Riksen JAG, Kammenga JE. Aging uncouples heritability and Expression-QTL in caenorhabditis elegans. G3. 2012;2: 597–605. doi:10.1534/g3.112.002212
76.
Bono M de, Bargmann CI. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in c. elegans. Cell. 1998;94: 679–689. doi:10.1016/s0092-8674(00)81609-8
77.
Andersen EC, Bloom JS, Gerke JP, Kruglyak L. A variant in the neuropeptide receptor npr-1 is a major determinant of caenorhabditis elegans growth and physiology. PLoS Genet. 2014;10: e1004156. doi:10.1371/journal.pgen.1004156
78.
Shimko TC, Andersen EC. COPASutils: An R package for reading, processing, and visualizing data from COPAS large-particle flow cytometers. PLoS One. 2014;9: e111090. doi:10.1371/journal.pone.0111090
79.
Bendesky A, Bargmann CI. Genetic contributions to behavioural diversity at the gene–environment interface. Nat Rev Genet. 2011;12: 809–820. doi:10.1038/nrg3065
80.
Brady SC, Zdraljevic S, Bisaga KW, Tanny RE, Cook DE, Lee D, et al. A novel gene underlies Bleomycin-Response variation in caenorhabditis elegans. Genetics. 2019;212: 1453–1468. doi:10.1534/genetics.119.302286
81.
Evans KS, Andersen EC. The gene scb-1 underlies variation in caenorhabditis elegans chemotherapeutic responses. G3 Genes|Genomes|Genetics. 2020;10: 2353–2364. doi:10.1534/g3.120.401310
82.
Hahnel SR, Zdraljevic S, Rodriguez BC, Zhao Y, McGrath PT, Andersen EC. Extreme allelic heterogeneity at a caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog. 2018;14: e1007226. doi:10.1371/journal.ppat.1007226
83.
Zdraljevic S, Fox BW, Strand C, Panda O, Tenjo FJ, Brady SC, et al. Natural variation in c. Elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. 2019. doi:10.7554/eLife.40260
84.
Zdraljevic S, Strand C, Seidel HS, Cook DE, Doench JG, Andersen EC. Natural variation in a single amino acid substitution underlies physiological responses to topoisomerase II poisons. PLoS Genet. 2017;13: e1006891. doi:10.1371/journal.pgen.1006891
85.
Evans KS, Wijk MH van, McGrath PT, Andersen EC, Sterken MG. From QTL to gene: C. Elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet. 2021;37: 933–947. doi:10.1016/j.tig.2021.06.005
86.
Nyaanga J, Goss C, Zhang G, Ahmed HN, Andersen EJ, Miller IR, et al. Changes in body shape implicate cuticle stretch in c. Elegans growth control. bioRxiv. 2022. p. 2021.04.01.438121. doi:10.1101/2021.04.01.438121
87.
Hone DWE, Benton MJ. The evolution of large size: How does cope’s rule work? Trends Ecol Evol. 2005;20: 4–6. doi:10.1016/j.tree.2004.10.012
88.
Björklund M. Cell size homeostasis: Metabolic control of growth and cell division. Biochim Biophys Acta Mol Cell Res. 2019;1866: 409–417. doi:10.1016/j.bbamcr.2018.10.002
89.
Willis L, Huang KC. Sizing up the bacterial cell cycle. Nat Rev Microbiol. 2017;15: 606–620. doi:10.1038/nrmicro.2017.79
90.
Turner JJ, Ewald JC, Skotheim JM. Cell size control in yeast. Curr Biol. 2012;22: R350–9. doi:10.1016/j.cub.2012.02.041
91.
Donnan L, John PC. Cell cycle control by timer and sizer in chlamydomonas. Nature. 1983;304: 630–633. doi:10.1038/304630a0
92.
Wang P, Hayden S, Masui Y. Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stage in xenopus laevis. J Exp Zool. 2000;287: 128–144. doi:10.1002/1097-010x(20000701)287:2<128::aid-jez3>3.0.co;2-g
93.
Iyer-Biswas S, Wright CS, Henry JT, Lo K, Burov S, Lin Y, et al. Scaling laws governing stochastic growth and division of single bacterial cells. Proc Natl Acad Sci U S A. 2014;111: 15912–15917. doi:10.1073/pnas.1403232111
94.
Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW. Cell growth and size homeostasis in proliferating animal cells. Science. 2009;325: 167–171. doi:10.1126/science.1174294
95.
Pavelescu I, Vilarrasa-Blasi J, Planas-Riverola A, González-Garcı́a M-P, Caño-Delgado AI, Ibañes M. A sizer model for cell differentiation in arabidopsis thaliana root growth. Mol Syst Biol. 2018;14: e7687. doi:10.15252/msb.20177687
96.
Sveiczer A, Novak B, Mitchison JM. The size control of fission yeast revisited. J Cell Sci. 1996;109 ( Pt 12): 2947–2957.
97.
Campos M, Surovtsev IV, Kato S, Paintdakhi A, Beltran B, Ebmeier SE, et al. A constant size extension drives bacterial cell size homeostasis. Cell. 2014;159: 1433–1446. doi:10.1016/j.cell.2014.11.022
98.
Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, et al. Cell-size control and homeostasis in bacteria. Curr Biol. 2015;25: 385–391. doi:10.1016/j.cub.2014.12.009
99.
Towbin BD, Grosshans H. A folder mechanism ensures size uniformity among c. Elegans individuals by coupling growth and development. bioRxiv. 2021.
100.
Soifer I, Robert L, Amir A. Single-Cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy. Curr Biol. 2016;26: 356–361. doi:10.1016/j.cub.2015.11.067
101.
Osella M, Nugent E, Cosentino Lagomarsino M. Concerted control of escherichia coli cell division. Proc Natl Acad Sci U S A. 2014;111: 3431–3435. doi:10.1073/pnas.1313715111
102.
Jorgensen P, Tyers M. How cells coordinate growth and division. Curr Biol. 2004;14: R1014–27. doi:10.1016/j.cub.2004.11.027
103.
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, et al. Robust growth of escherichia coli. Curr Biol. 2010;20: 1099–1103. doi:10.1016/j.cub.2010.04.045
104.
Cadart C, Monnier S, Grilli J, Sáez PJ, Srivastava N, Attia R, et al. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat Commun. 2018;9: 3275. doi:10.1038/s41467-018-05393-0
105.
Moss-Taylor L, Upadhyay A, Pan X, Kim M-J, O’Connor MB. Body size and Tissue-Scaling is regulated by Motoneuron-Derived activinß in drosophila melanogaster. Genetics. 2019;213: 1447–1464. doi:10.1534/genetics.119.302394
106.
Spence AJ. Scaling in biology. Curr Biol. 2009;19: R57–61. doi:10.1016/j.cub.2008.10.042
107.
Byerly L, Cassada RC, Russell RL. The life cycle of the nematode caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol. 1976;51: 23–33. doi:10.1016/0012-1606(76)90119-6
108.
Knight CG, Patel MN, Azevedo RBR, Leroi AM. A novel mode of ecdysozoan growth in caenorhabditis elegans. Evol Dev. 2002;4: 16–27. doi:10.1046/j.1525-142x.2002.01058.x
109.
Faerberg DF, Gurarie V, Ruvinsky I. Inferring temporal organization of postembryonic development from high-content behavioral tracking. Dev Biol. 2021;475: 54–64. doi:10.1016/j.ydbio.2021.02.007
110.
Filina O, Haagmans R, Zon JS van. Temporal scaling in c. Elegans larval development. bioRxiv. 2020. p. 2020.09.21.306423. doi:10.1101/2020.09.21.306423
111.
Cook DE, Zdraljevic S, Tanny RE, Seo B, Riccardi DD, Noble LM, et al. The genetic basis of natural variation in caenorhabditis elegans telomere length. Genetics. 2016;204: 371–383. doi:10.1534/genetics.116.191148
112.
Stiernagle T. Maintenance of c. elegans. WormBook; 2006.
113.
Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics international. 2004;11: 36–42.
114.
Andersen EC, Shimko TC, Crissman JR, Ghosh R, Bloom JS, Seidel HS, et al. A powerful new quantitative genetics platform, combining caenorhabditis elegans High-Throughput fitness assays with a large collection of recombinant strains. G3. 2015;5: 911–920. doi:10.1534/g3.115.017178
115.
Scrucca L, Fop M, Murphy TB, Raftery AE. Mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. R J. 2016;8: 289–317.
116.
Smith MV, Boyd WA, Kissling GE, Rice JR, Snyder DW, Portier CJ, et al. A discrete time model for the analysis of medium-throughput c. Elegans growth data. PLoS One. 2009;4: e7018. doi:10.1371/journal.pone.0007018
117.
Hermann E. Lokern: Kernel regression smoothing with local or global plug-in bandwidth. R package version 1.1-8. https://CRAN.R-project.org/package=lokern; 2016.
118.
Sakamoto Y, Ishiguro M, Kitagawa G. Akaike information criterion statistics. Dordrecht, The Netherlands: D Reidel. 1986;81: 26853.
119.
Schwarz G. Estimating the dimension of a model. aos. 1978;6: 461–464. doi:10.1214/aos/1176344136
120.
Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90: 773. doi:10.2307/2291091
121.
Burnham KP, Anderson DR. Model selection and multimodel inference: A practical Information-Theoretic approach. Springer Science & Business Media; 2007.
122.
Pulak R. Techniques for analysis, sorting, and dispensing of c. Elegans on the COPAS™ Flow-Sorting system. In: Strange K, editor. C Elegans: Methods and applications. Totowa, NJ: Humana Press; 2006. pp. 275–286. doi:10.1385/1-59745-151-7:275
123.
Nika L, Gibson T, Konkus R, Karp X. Fluorescent beads are a versatile tool for staging caenorhabditis elegans in different life histories. G3. 2016;6: 1923–1933. doi:10.1534/g3.116.030163
124.
Vuaridel-Thurre G, Vuaridel AR, Dhar N, McKinney JD. Computational analysis of the mutual constraints between Single-Cell growth and division control models. Adv Biosyst. 2020;4: e1900103. doi:10.1002/adbi.201900103
125.
Holzapfel GA. Similarities between soft biological tissues and rubberlike materials. Constitutive Models for Rubber IV. 2017; 607–617. doi:10.1201/9781315140216-105
126.
Essmann CL, Elmi M, Shaw M, Anand GM, Pawar VM, Srinivasan MA. In-vivo high resolution AFM topographic imaging of caenorhabditis elegans reveals previously unreported surface structures of cuticle mutants. Nanomedicine. 2017;13: 183–189. doi:10.1016/j.nano.2016.09.006
127.
Dodd W, Tang L, Lone J-C, Wimberly K, Wu C-W, Consalvo C, et al. A damage sensor associated with the cuticle coordinates three core environmental stress responses in caenorhabditis elegans. Genetics. 2018;208: 1467–1482. doi:10.1534/genetics.118.300827
128.
Yochem J, Lažetić V, Bell L, Chen L, Fay D. C. Elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Dev Biol. 2015;398: 255–266. doi:10.1016/j.ydbio.2014.12.008
129.
Petzold BC, Park S-J, Ponce P, Roozeboom C, Powell C, Goodman MB, et al. Caenorhabditis elegans body mechanics are regulated by body wall muscle tone. Biophys J. 2011;100: 1977–1985. doi:10.1016/j.bpj.2011.02.035
130.
Cox GN, Staprans S, Edgar RS. The cuticle of caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev Biol. 1981;86: 456–470. doi:10.1016/0012-1606(81)90204-9
131.
Park S-J, Goodman MB, Pruitt BL. Analysis of nematode mechanics by piezoresistive displacement clamp. Proc Natl Acad Sci U S A. 2007;104: 17376–17381. doi:10.1073/pnas.0702138104
132.
Gilpin W, Uppaluri S, Brangwynne CP. Worms under pressure: Bulk mechanical properties of c. Elegans are independent of the cuticle. Biophysical Journal. 2015. pp. 1887–1898. doi:10.1016/j.bpj.2015.03.020
133.
Golden JW, Riddle DL. The caenorhabditis elegans dauer larva: Developmental effects of pheromone, food, and temperature. Dev Biol. 1984;102: 368–378. doi:10.1016/0012-1606(84)90201-x
134.
Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 2013;14: 509–519. doi:10.1038/embor.2013.49
135.
Wolfenson H, Bershadsky A, Henis YI, Geiger B. Actomyosin-generated tension controls the molecular kinetics of focal adhesions. J Cell Sci. 2011;124: 1425–1432. doi:10.1242/jcs.077388
136.
Suman SK, Daday C, Ferraro T, Vuong-Brender T, Tak S, Quintin S, et al. The plakin domain of VAB-10/plectin acts as a hub in a mechanotransduction pathway to promote morphogenesis. Development. 2019;146. doi:10.1242/dev.183780
137.
Zhang H, Landmann F, Zahreddine H, Rodriguez D, Koch M, Labouesse M. A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature. 2011;471: 99–103. doi:10.1038/nature09765
138.
Moerman DG, Williams BD. Sarcomere assembly in c. Elegans muscle. WormBook. 2006; 1–16. doi:10.1895/wormbook.1.81.1
139.
Costa M, Draper BW, Priess JR. The role of actin filaments in patterning the caenorhabditis elegans cuticle. Dev Biol. 1997;184: 373–384. doi:10.1006/dbio.1997.8530
140.
Broday L, Hauser CA, Kolotuev I, Ronai Z. Muscle-epidermis interactions affect exoskeleton patterning in caenorhabditis elegans. Dev Dyn. 2007;236: 3129–3136. doi:10.1002/dvdy.21341
141.
Madaan U, Faure L, Chowdhury A, Ahmed S, Ciccarelli EJ, Gumienny TL, et al. Feedback regulation of BMP signaling by cuticle collagens. Mol Biol Cell. 2020;31: 825–832. doi:10.1091/mbc.E19-07-0390
142.
Katz SS, Maybrun C, Maul-Newby HM, Frand AR. Non-canonical apical constriction shapes emergent matrices in c. elegans. bioRxiv. 2018. p. 189951. doi:10.1101/189951
143.
Fechner S, Loizeau F, Nekimken AL, Pruitt BL, Goodman MB. The bodies of dpy-10(e128) are twice as stiff as wild type. MicroPubl Biol. 2018;2018. doi:10.17912/ecsm-mp67
144.
Horvitz HR, Sulston JE. Isolation and genetic characterization of cell-lineage mutants of the nematode caenorhabditis elegans. Genetics. 1980;96: 435–454.
145.
Waddington CH. CANALIZATION OF DEVELOPMENT AND THE INHERITANCE OF ACQUIRED CHARACTERS. Nature. 1942;150: 563–565. doi:10.1038/150563a0
146.
Tanner JM. THE REGULATION OF HUMAN GROWTH. Child Dev. 1963;34: 817–847. doi:10.1111/j.1467-8624.1963.tb05970.x
147.
Cameron N, Bogin B. Human growth and development. Academic Press; 2012.
148.
Desmond C, Casale D. Catch-up growth in stunted children: Definitions and predictors. PLoS One. 2017;12: e0189135. doi:10.1371/journal.pone.0189135
149.
Hector KL, Nakagawa S. Quantitative analysis of compensatory and catch-up growth in diverse taxa. J Anim Ecol. 2012;81: 583–593. doi:10.1111/j.1365-2656.2011.01942.x
150.
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in caenorhabditis nematodes. Genetics. 2022;220. doi:10.1093/genetics/iyab156
151.
Garcı́a-González AP, Ritter AD, Shrestha S, Andersen EC, Yilmaz LS, Walhout AJM. Bacterial metabolism affects the c. Elegans response to cancer chemotherapeutics. Cell. 2017;169: 431–441.e8. doi:10.1016/j.cell.2017.03.046
152.
Evans KS, Brady SC, Bloom JS, Tanny RE, Cook DE, Giuliani SE, et al. Shared genomic regions underlie natural variation in diverse toxin responses. Genetics. 2018;210: 1509–1525. doi:10.1534/genetics.118.301311
153.
Team RC. R: A language and environment for statistical computing http://www. R-project org. 2014.
154.
Rockman MV, Kruglyak L. Recombinational landscape and population genomics of caenorhabditis elegans. PLoS Genet. 2009;5: e1000419. doi:10.1371/journal.pgen.1000419
155.
Lee D, Zdraljevic S, Stevens L, Wang Y, Tanny RE, Crombie TA, et al. Balancing selection maintains hyper-divergent haplotypes in caenorhabditis elegans. Nat Ecol Evol. 2021;5: 794–807. doi:10.1038/s41559-021-01435-x
156.
Gillooly DJ, Simonsen A, Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J. 2001;355: 249–258. doi:10.1042/bj3550249
157.
Nicot A-S, Fares H, Payrastre B, Chisholm AD, Labouesse M, Laporte J. The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in caenorhabditis elegans. Mol Biol Cell. 2006;17: 3062–3074. doi:10.1091/mbc.e05-12-1120
158.
Asahina M, Ishihara T, Jindra M, Kohara Y, Katsura I, Hirose S. The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in caenorhabditis elegans. Genes Cells. 2000;5: 711–723. doi:10.1046/j.1365-2443.2000.00361.x
159.
Gissendanner CR, Sluder AE. Nhr-25, the caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol. 2000;221: 259–272. doi:10.1006/dbio.2000.9679
160.
Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in caenorhabditis elegans by high-throughput RNAi. Curr Biol. 2001;11: 171–176. doi:10.1016/s0960-9822(01)00052-5
161.
Houle D. Comparing evolvability and variability of quantitative traits. Genetics. 1992;130: 195–204. doi:10.1093/genetics/130.1.195
162.
Ghosh R, Bloom JS, Mohammadi A, Schumer ME, Andolfatto P, Ryu W, et al. Genetics of intraspecies variation in avoidance behavior induced by a thermal stimulus in caenorhabditis elegans. Genetics. 2015;200: 1327–1339. doi:10.1534/genetics.115.178491
163.
Noble LM, Chelo I, Guzella T, Afonso B, Riccardi DD, Ammerman P, et al. Polygenicity and epistasis underlie Fitness-Proximal traits in the caenorhabditis elegans multiparental experimental evolution (CeMEE) panel. Genetics. 2017;207: 1663–1685. doi:10.1534/genetics.117.300406
164.
Bernstein MR, Zdraljevic S, Andersen EC, Rockman MV. Tightly linked antagonistic-effect loci underlie polygenic phenotypic variation in c. elegans. Evol Lett. 2019;3: 462–473. doi:10.1002/evl3.139
165.
Rockman MV. The QTN program and the alleles that matter for evolution: All that’s gold does not glitter. Evolution. 2012;66: 1–17. doi:10.1111/j.1558-5646.2011.01486.x
166.
Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S, et al. A saturated map of common genetic variants associated with human height from 5.4 million individuals of diverse ancestries. bioRxiv. 2022. p. 2022.01.07.475305. doi:10.1101/2022.01.07.475305
167.
Mörck C, Pilon M. C. Elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol. 2006;6: 39. doi:10.1186/1471-213X-6-39
168.
Cho JY, Choi T-W, Kim SH, Ahnn J, Lee S-K. Morphological characterization of small, dumpy, and long phenotypes in caenorhabditis elegans. Mol Cells. 2021;44: 160–167. doi:10.14348/molcells.2021.2236
169.
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: From polygenic to omnigenic. Cell. 2017;169: 1177–1186. doi:10.1016/j.cell.2017.05.038
170.
Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG, et al. Widespread genomic incompatibilities in caenorhabditis elegans. G3. 2014;4: 1813–1823. doi:10.1534/g3.114.013151
171.
Maulana MI, Riksen JAG, Snoek BL, Kammenga JE, Sterken MG. The genetic architecture underlying body-size traits plasticity over different temperatures and developmental stages in caenorhabditis elegans. Heredity. 2022. doi:10.1038/s41437-022-00528-y
172.
Xie Y. Bookdown: Authoring books and technical documents with R markdown. CRC Press; 2016.
173.
Nyaanga J, Crombie TA, Widmayer SJ, Andersen EC. easyXpress: An R package to analyze and visualize high-throughput c. Elegans microscopy data generated using CellProfiler. PLoS One. 2021;16: e0252000. doi:10.1371/journal.pone.0252000
174.
Swedlow JR. Innovation in biological microscopy: Current status and future directions. Bioessays. 2012;34: 333–340. doi:10.1002/bies.201100168
175.
Cassidy PJ, Radda GK. Molecular imaging perspectives. J R Soc Interface. 2005;2: 133–144. doi:10.1098/rsif.2005.0040
176.
White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314: 1–340. doi:10.1098/rstb.1986.0056
177.
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental evolution with nematodes. Genetics. 2017;206: 691–716. doi:10.1534/genetics.115.186288
178.
Wählby C, Kamentsky L, Liu ZH, Riklin-Raviv T, Conery AL, O’Rourke EJ, et al. An image analysis toolbox for high-throughput c. Elegans assays. Nat Methods. 2012;9: 714–716. doi:10.1038/nmeth.1984
179.
Boyd WA, Smith MV, Freedman JH. Caenorhabditis elegans as a model in developmental toxicology. In: Harris C, Hansen JM, editors. Developmental toxicology: Methods and protocols. Totowa, NJ: Humana Press; 2012. pp. 15–24. doi:10.1007/978-1-61779-867-2\_3
180.
Tukey JW, Others. Exploratory data analysis. Reading, Mass.; 1977.
181.
Dilks CM, Hahnel SR, Sheng Q, Long L, McGrath PT, Andersen EC. Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. Int J Parasitol Drugs Drug Resist. 2020;14: 28–36. doi:10.1016/j.ijpddr.2020.08.003
182.
Wit J, Rodriguez BC, Andersen EC. Natural variation in caenorhabditis elegans responses to the anthelmintic emodepside. Int J Parasitol Drugs Drug Resist. 2021;16: 1–8. doi:10.1016/j.ijpddr.2021.04.001
183.
Nyaanga J, Goss C, Zhang G, Ahmed HN, Andersen EJ, Miller IR, et al. Highly scaled measurements of c. Elegans development suggest that physical constraints guide growth trajectories and animal shape. bioRxiv. 2021. p. 2021.04.01.438121. doi:10.1101/2021.04.01.438121
184.
Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature. 1997;387: 489–493. doi:10.1038/387489a0
185.
Telford MJ, Bourlat SJ, Economou A, Papillon D, Rota-Stabelli O. The evolution of the ecdysozoa. Philos Trans R Soc Lond B Biol Sci. 2008;363: 1529–1537. doi:10.1098/rstb.2007.2243
186.
Alpatov WW. Growth and variation of the larvae of drosophila melanogaster. J Exp Zool. 1929;52: 407–437. doi:10.1002/jez.1400520303
187.
Rice AL. Growth ‘rules’ and the larvae of decapod crustaceans. J Nat Hist. 1968;2: 525–530. doi:10.1080/00222936800771011
188.
Howells RE, Blainey LJ. The moulting process and the phenomenon of intermoult growth in the filarial nematode brugia pahangi. Parasitology. 1983;87 (Pt 3): 493–505. doi:10.1017/s0031182000083013
189.
Wilson PAG. Nematode growth patterns and the moulting cycle: The population growth profile. J Zool. 1976;179: 135–151. doi:10.1111/j.1469-7998.1976.tb03231.x
190.
Malakhov UV, Others. Nematodes: Structure, development, classification and phylogeny. Nematodes: structure, development, classification and phylogeny. 1986.
191.
Uppaluri S, Weber SC, Brangwynne CP. Hierarchical size scaling during multicellular growth and development. Cell Rep. 2016;17: 345–352. doi:10.1016/j.celrep.2016.09.007
192.
Essmann CL, Martinez-Martinez D, Pryor R, Leung K-Y, Krishnan KB, Lui PP, et al. Mechanical properties measured by atomic force microscopy define health biomarkers in ageing c. elegans. Nature Communications. 2020. doi:10.1038/s41467-020-14785-0
193.
Rahimi M, Sohrabi S, Murphy CT. Novel elasticity measurements reveal c. Elegans cuticle stiffens with age and in a long-lived mutant. Biophys J. 2022;121: 515–524. doi:10.1016/j.bpj.2022.01.013
194.
Riddle DL, Blumenthal T, Meyer BJ, Priess JR. Introduction: The neural circuit for locomotion. Cold Spring Harbor Laboratory Press; 1997.
195.
Altun ZF, Hall DH. WormAtlas hermaphrodite handbook - nervous system - general description. WormAtlas. 2005. doi:10.3908/wormatlas.1.18
196.
Altun ZF, Hall DH. WormAtas hermaphrodite handbook - introduction. WormAtlas. 2006. doi:10.3908/wormatlas.1.1
197.
Pigliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol. 2006;209: 2362–2367. doi:10.1242/jeb.02070
198.
Lafuente E, Beldade P. Genomics of developmental plasticity in animals. Front Genet. 2019;10: 720. doi:10.3389/fgene.2019.00720
199.
Pigliucci M. Evolution of phenotypic plasticity: Where are we going now? Trends in Ecology & Evolution. 2005. pp. 481–486. doi:10.1016/j.tree.2005.06.001
200.
Hodgins-Davis A, Adomas AB, Warringer J, Townsend JP. Abundant gene-by-environment interactions in gene expression reaction norms to copper within saccharomyces cerevisiae. Genome Biol Evol. 2012;4: 1061–1079. doi:10.1093/gbe/evs084
201.
Rocha F, Medeiros HF, Klaczko LB. The reaction norm for abdominal pigmentation and its curve in drosophila mediopunctata depend on the mean phenotypic value. Evolution. 2009;63: 280–287. doi:10.1111/j.1558-5646.2008.00503.x